The First L-Betti Number of Classifying Spaces for Variations of Hodge Structures
نویسنده
چکیده
Classical Hodge theory gives a decomposition of the complex cohomology of a compact Kähler manifold M , which carries the standard Hodge structure {H(M), p + q = k} of weight k. Deformations of M then lead to variations of the Hodge structure. This is best understood when reformulating the Hodge decomposition in an abstract manner. Let HC = HR ⊕ C be a complex vector space with a real structure. A Hodge structure on HC is a decomposition
منابع مشابه
S-duality in Hyperkähler Hodge Theory
Here we survey questions and results on the Hodge theory of hyperkähler quotients, motivated by certain S-duality considerations in string theory. The problems include L2 harmonic forms, Betti numbers and mixed Hodge structures on the moduli spaces of Yang-Mills instantons on ALE gravitational instantons, magnetic monopoles on R3 and Higgs bundles on a Riemann surface. Several of these spaces a...
متن کاملHodge Spaces of Real Toric Varieties
We define the Z2 Hodge spaces Hpq(Σ) of a fan Σ. If Σ is the normal fan of a reflexive polytope ∆ then we use polyhedral duality to compute the Z2 Hodge Spaces of Σ. In particular, if the cones of dimension at most e in the face fan Σ of ∆ are smooth then we compute Hpq(Σ) for p < e− 1. If Σ is a smooth fan then we completely determine the spaces Hpq(Σ) and we show XΣ is maximal, meaning that t...
متن کاملHodge Polynomials of the Moduli Spaces of Rank 3 Pairs
Let X be a smooth projective curve of genus g ≥ 2 over the complex numbers. A holomorphic triple (E1, E2, φ) on X consists of two holomorphic vector bundles E1 and E2 over X and a holomorphic map φ : E2 → E1. There is a concept of stability for triples which depends on a real parameter σ. In this paper, we determine the Hodge polynomials of the moduli spaces of σ-stable triples with rk(E1) = 3,...
متن کاملKatz’s middle convolution algorithm
This is an expository account of Katz’s middle convolution operation on local systems over P − {q1, . . . , qn}. We describe the Betti and de Rham versions, and point out that they give isomorphisms between different moduli spaces of local systems, following Völklein, Dettweiler-Reiter, Haraoka-Yokoyama. Kostov’s program for applying the Katz algorithm is to say that in the range where middle c...
متن کامل2 00 6 Katz ’ S Middle Convolution Algorithm
This is an expository account of Katz's middle convolution operation on local systems over P 1 − {q 1 ,. .. , q n }. We describe the Betti and de Rham versions, and point out that they give isomorphisms between different moduli spaces of local systems, following Völklein, Dettweiler-Reiter, Haraoka-Yokoyama. Kostov's program for applying the Katz algorithm is to say that in the range where midd...
متن کامل